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Abstract— Radio Frequency (RF) energy harvesting has 

been employed to power wireless devices. Nevertheless, RF 

energy harvesting encounters restrictions regarding the 

quantity of power it can harvest depending on signal 

accessibility. As a result, accurately predicting energy levels 

becomes crucial for enhancing the performance of energy 

harvesting circuits. Most research efforts have concentrated 

on enhancing power harvesting policies or theoretically 

estimating the energy obtained through RF energy 

harvesting. Moreover, the existing literature has primarily 

focused on single-band prediction approaches. This paper 

presents a multi-band RF energy prediction approach for RF 

energy harvesting systems. We collect real-time RF energy 

using software-defined radio technology. The proposed 

approach leverages Long Short-Term Memory (LSTM) 

neural networks to accurately predict the mean RF energy in 

different frequency bands for the next 100 samples, which 

corresponds to approximately one hour and a half. The 

research explores the research gap in modeling the radio 

frequency signal and the need for multi-band prediction 

techniques. The results demonstrate the effectiveness of the 

proposed approach in predicting RF energy across different 

frequency bands, with average accuracies above 98%. 

Keywords— Radio frequency, energy harvesting, energy 

prediction, multi-band, machine learning, time series model. 

I. INTRODUCTION  

Recent research has studied energy harvesting as the 
primary source of electricity in many applications. Energy 
harvesting refers to the process of obtaining energy from 
environmental sources and converting it to electrical energy 
for use to power other devices [1]. One popular source is 
radio frequency (RF) energy, which can be obtained through 
satellite stations, TV signals, radio waves, and Wi-Fi signals 
[2]. RF energy harvesting systems have attracted significant 
attention recently due to their potential to power wireless 
and low-powered devices autonomously and sustainably 
[3]. The significance of RF energy harvesting lies in its 
ability to address the challenges associated with traditional 
power sources such as batteries or wired connections. 
Batteries have some problems with increasing the size and 
the cost of the device. In addition, batteries require regular 
replacement or recharging, which can be inconvenient, 
costly, and environmentally unfriendly. On the other hand, 
wired connections may not be feasible or practical in many 
scenarios, especially in remote or inaccessible locations. 

RF energy offers several advantages, including its 
widespread availability and independence from weather 
conditions [2]. Additionally, RF energy harvesters are 

compact in size anfd can be easily integrated into various 
devices. As a result, Radio frequency energy harvesting 
(RFEH) has been employed in cognitive radio networks, 
wireless sensor networks (WSN) [4], biomedical wearable 
devices [5], and Internet of Things (IoT) applications [6]. 

On the contrary, RF energy harvesting systems face 
challenges in terms of the amount of power that can be 
harvested based on signal availability [7], [8]. The 
availability and distribution of RF signals vary based on 
factors such as time, location, and spectrum utilization. The 
amount of RF energy present during working days can differ 
from weekends, indicating temporal variations in energy 
levels for specific locations. Additionally, certain frequency 
bands exhibit higher RF energy levels compared to others 
[9]. Areas with more cell phone users tend to have increased 
RF energy. Consequently, an effective RF energy 
harvesting circuit should be able to select the optimal time 
and optimal frequency band for energy harvesting.  

In a single-band system, the RF harvester can only 
harvest from specific frequencies, limiting its capability to 
harvest from other accessible frequency bands in the 
environment. This limitation results in missed chances for 
energy harvesting, as the energy density might vary across 
different bands. If the ambient energy in a particular band is 
low, harvesting efficiency may suffer, leading to poor power 
output [10]. To overcome these limitations, a concept 
known as multiband RFEH systems has been established to 
satisfy the power needs and maximize the output power. 
These systems are designed to gather energy from multiple 
RF bands, enabling a more diverse and abundant energy 
supply. This strategy increases the system’s overall 
performance and efficiency by expanding the range of 
energy-gathering capabilities [11], [12].  

Consequently, accurate prediction of the available RF 
energy becomes crucial to optimize the performance of 
energy harvesting circuits. Machine learning (ML) 
techniques can predict the locations and timings with the 
highest RF energy levels, enabling better decision-making 
in RF energy harvesting. Multi-band prediction techniques 
are vital in optimizing efficiency and performance by 
analyzing historical data, utilizing machine learning 
algorithms, and forecasting energy availability. These 
techniques also determine the most suitable frequency 
bands for real-time harvesting, allowing dynamic adaptation 
to changing environmental conditions and efficient 
allocation of resources for maximum energy capture. 



 Motivated by the challenges faced by RF energy 
harvesting systems, particularly related to signal availability 
and limitations of single-band systems, this paper proposes 
a multi-band RF energy prediction approach for RFEH 
systems. By harnessing the advantages of multi-band 
harvesting, we aim to maximize energy capture potential 
and enhance the overall performance of energy harvesting 
circuits. To achieve this, we employ machine learning 
techniques, precisely Long Short-Term Memory (LSTM), 
to accurately predict RF energy availability across six 
different frequency bands. 

The remainder of this paper is structured as follows. 
Section 2 provides a comprehensive literature review 
covering the current state of research in the field. RF data 
measurement, pre-processing, and the proposed model are 
illustrated in section 3. The obtained results for predicting 
RF energy are discussed in section 4. Finally, section 5 
concludes the research by summarizing the findings and 
drawing meaningful insights. 

II. LITERATURE REVIEW 

Various applications have demonstrated the 
effectiveness of RF energy harvesting. For instance, a 
designed energy harvester chip operated at -12 dBm input 
power and powered a microcontroller + radio SoC [13]. In 
addition, a configurable 2.45 GHz RF to DC power 
converter achieved over 20% efficiency by dynamically 
switching between low-power and high-power paths 
depending on the RF power input value [14]. In industrial 
applications, the Powercast P2110 harvester produced an 
output voltage of 5.25 V [15]. Other examples include a 
sensor module in a system for monitoring food quality 
powered by an RF energy harvester with an operating 
frequency of 915 MHz [16]. A 1.8 GHz RF energy harvester 
was intended for powering the sensor nodes in a museum 
monitoring system [17].  

Moreover, researchers proposed an RF energy harvester 
operating at 2.45 GHz with 48.3% efficiency at -3 dBm 
input power to power an IoT-based smart sensor system 
[18]. In their study [19], researchers demonstrated a system 
capable of generating up to 133.25W of power through the 
simultaneous harvesting of solar and RF sources. The 
hybrid system effectively charged devices in wireless sensor 
networks with a stable voltage and current of 20.5V and 
6.5A, respectively, resulting in faster and more efficient 
charging. Independently, the dual-band, multi-stage RF 
harvester circuit could operate at 2.4GHz, Wi-Fi/WLAN 
frequencies. Another research developed a triple-band 
monopole rectenna for RF energy harvesting in smart city 
applications. The harvester operated in the frequency range 
of 1.25-3 GHz. Experimental measurements confirmed an 
output voltage of 1.123 V at the 2.45 GHz frequency [20]. 

Machine learning has found wide-ranging applications 
in communication systems, including RF energy harvesting 
circuits. Several studies have focused on developing optimal 
harvesting strategies for RFEH devices. For example, the 
approach in [21] introduced the Markov decision process 
(MDP) combined with an online algorithm to determine the 
most effective strategy for channel access whether for data 
transmission or energy harvesting, in cognitive radio 
networks. MDP has also been utilized to optimize power 
allocation in devices powered by energy harvesting [22], 
[23]. In [24], a protocol was introduced by the authors to 

facilitate RF energy harvesting for sensors in wireless 
sensor networks (WSNs) from both unintended and 
intended sources. The protocol utilizes two algorithms, 
namely a linear forecaster with a linear regression-based 
enhancer and artificial neural networks, to determine the 
optimal scheduling for RF energy harvesting. In [25], a 
decision policy based on the Bayesian multi-armed bandit 
(MAB) approach was developed to identify the optimal sub-
band for harvesting. 

 Meanwhile, in [26], researchers focused on employing 
RFEH technology for charging the batteries of drones. They 
proposed an energy harvesting strategy to minimize drones’ 
overall long-term power usage. These studies demonstrate 
the use of machine learning algorithms to enhance the 
efficiency and performance of RF energy harvesting 
systems. Notably, none of these studies utilized machine 
learning techniques for modeling the radio frequency signal 
itself, highlighting a potential avenue for future exploration 
in this field. 

Previous studies present notable contributions in energy 
estimation for devices that harvest energy. In one study [27], 
a learning algorithm leveraging Bayes’ theorem was 
employed in a hybrid access point (HAP) to estimate the 
energy consumption of wireless devices that harness energy 
from the HAP. In another study [28], researchers focused on 
the effect of human mobility on the energy storage medium, 
particularly in wearable devices. To address this, they 
introduced a Kalman filter-based predictor, which 
effectively estimated how much energy is accessible and 
facilitated energy exchange between capacitors of different 
sizes depending on the surrounding environment. In [29], an 
energy prediction algorithm utilizing the moving average 
approach was introduced for WSN nodes. This algorithm 
considered the historical data of the target node and the 
neighbouring nodes to predict energy levels. It is worth 
noting that while these works tackled the optimization of 
RFEH processes, none of them incorporated actual RF 
measurements in their methodologies.  

Researchers have explored different learning techniques 
for optimizing the RF energy harvesting process. For 
instance, decision trees (DT) and linear regression (LR) 
were employed to predict RF energy at specific times and 
frequencies [30]. Researchers also utilized support vector 
machines (SVM) to forecast the highest Wi-Fi strength that 
would be available in different areas [31]. Additionally, four 
ML approaches including LR, SVM, DT, and random forest 
algorithm (RFA) were investigated to forecast the RF 
energy available in communication systems [32]. 

In conclusion, the literature review highlights the 
effectiveness of RF energy harvesting in various 
applications. Machine learning techniques have 
significantly optimized RF energy harvesting processes, 
including channel access, power allocation, and energy 
estimation strategies. However, there is still a research gap 
in utilizing machine learning to model the radio frequency 
signal. In addition, there is also a notable gap in exploring 
multi-band prediction techniques. To address these gaps, 
this study suggests a multi-band prediction approach to 
model the real-time RF energy as time series data and 
predict the energy in six frequency bands. 



III. EXPERIMENTAL METHODS/METHODOLOGY 

In the approach outlined in this paper, we follow 
multiple stages for model generation, as shown in Fig. 1. 
Firstly, we collect the raw RF energy signal. The second 
phase involves data preparation, including standardization 
and cleaning. The resulting processed data are then used for 
model training and evaluation. 

 
Fig. 1. ML workflow for model generation. 

A. Data Collection 

The data collection process involved obtaining real-time 
measurements in multiple cellular frequency bands using 
software-defined radio (SDR) technology. SDR is a 
software-controlled radio that offers flexibility in 
functionality without requiring hardware changes. The 
block diagram of the SDR receiver is presented in Fig. 2. 
The SDR receiver captures RF waves through an antenna, 
converts them to IF using the RF Front End (RFFE), and 
processes them digitally with the analog to digital converter 
(ADC) and digital down converter (DDC) [33]. The 
universal software radio peripheral (USRP) N210 [34], 
presented in Fig. 3, is the hardware interface, connecting the 
RF spectrum to software via an Ethernet connection. GNU 
radio framework is used for baseband processing [35]. The 
RF signal is received by a printed circuit board (PCB) log 
periodic antenna operating between 850 and 6500 MHz. 
The signal measurement employs a conventional energy 
detection approach. This technique involves passing the 
signal through a band pass filter (BPF), squaring the result, 
and integrating it over a time interval [36]. 

 

Fig. 2. SDR receiver block diagram. 

 

 

Fig. 3. The USRP N210. 

 

To ensure a comprehensive dataset, The RF signal was 
monitored across six cellular frequency bands spanning 
from 880 MHz to 2170 MHz. The range of bands includes 
880–915 MHz, 925–960 MHz, 1710–1785 MHz, 1805–
1880 MHz, 1920–1980 MHz, and 2110– 2170 MHz. Within 
each band, the frequency range was divided into smaller 
bins with a bandwidth of 0.2 MHz. Data points of the same 
bin were recorded at one-minute intervals. 

B. Data Pre-processing 

Pre-processing is the second step in our model, which 
involves two main tasks: data standardization and data 

cleaning. Data standardization ensures that the data are 
transformed to a standardized scale and facilitates consistent 
analysis. For data cleaning, we employ an anomaly 
detection algorithm to identify any outliers in the dataset. 
We utilized the Random Cut Forest (RCF) algorithm. This 
algorithm assigns an anomaly score to each data point. 
Lower scores indicate that the data points are considered 
normal, while higher scores indicate the presence of 
anomalous data points. By detecting and addressing these 
outliers, we obtain a clean and reliable dataset that can be 
used for subsequent stages such as model training and 
testing. 

C. Model Architecture 

The model architecture proposed for multi-band 
prediction was based on LSTM neural networks. LSTM is a 
Recurrent Neural Network (RNN) type that excels at 
capturing sequential patterns. It utilizes a memory 
mechanism where the output of the prior step is used as 
input to the current step, allowing it to retain critical 
information. LSTM is particularly effective in handling 
sequence data and addressing the issue of vanishing 
gradients, enabling it to capture long-term dependencies 
[37]. 

The architecture of the LSTM model consisted of 
multiple layers as shown in Fig. 4. The first is a 64-unit 
LSTM layer with the rectified linear unit (ReLU) activation 
function employed. This layer was followed by a 32-unit 
LSTM layer and a 16-unit LSTM layer, both also utilizing 
the ReLU activation function. Finally, a dense layer with 
linear activation was used to generate predictions for the 
energy levels in the six cellular frequency bands.   

 

Fig. 4. Proposed LSTM architecture. 

D. Model Training and Evaluation 

The training procedure involved dividing the dataset 
into two subsets of 70% for training and 30% for testing. 
The training dataset was used to optimize the model's 
parameters, while the testing dataset was kept separate for 
evaluation. The model was trained using diverse data from 
different days to improve the model's ability to generalize 
and make accurate predictions on unseen data. Additionally, 
hyperparameter tuning was also performed to optimize the 
model's performance. This involved exploring different 
combinations of hyperparameters, such as learning rate, 
batch size, and number of hidden layers. 

The model was trained using the adaptive moment 
(ADAM) optimization algorithm to ensure computational 
efficiency. The learning rate is set at 10^-3, and the mean 
square error is utilized as the loss function. To evaluate the 
performance of the model, we calculated the normalized 
root mean square error (NRMSE) for N number of time 
samples, expressed by (1) and (2), to represent the 
prediction error, where N is the number of training samples, 
y is actual output, and ŷ is the predicted output. 



   RMSE = �∑ �yi ــ ŷi�N
i=1

2

N
    (1) 

 NRMSE = RMSE

max(�)ــ  min(y)
 . (2) 

IV. RESULTS AND DISCUSSION 

A. Proposed Model Performance 

In this experiment, different sub-bands of the six bands 
were utilized for evaluation. The window size, which 
determines the number of previous data points used as 
history before predicting the following sample, was set to 
10 samples. We predict the mean of the following 100 
samples, representing one hundred-minute period. 
Performance results, presented in Table 1, describe the 
NRMSE for predicting RF energy samples using the LSTM 
model. Each value in the table represents the average error 
value of using different chunks in each band. Each chunk 
has 4096 samples of observations. 

TABLE I.  PERFORMANCE COMPARISON OF LSTM IN SIX BANDS IN 

TERMS OF NRMSE 

Frequency 

Bands 

Mean NRMSE  

Chunk 

1 

Chunk 

2 

Chunk 

3 

Chunk 

4 

Chunk 

5 

880-915 
MHz 

0.0082 0.0062 0.0083 0.0063 0.0079 

925-960 

MHz 

0.0093 0.0118 0.0119 0.0099 0.0088 

1710-1785 
MHZ 

0.0115 0.0079 0.012 0.0076 0.0113 

1805-1880 

MHZ 

0.0068 0.0126 0.0124 0.0067 0.0123 

1920-1980 
MHZ 

0.01 0.0112 0.0103 0.0108 0.0105 

2110-2170 

MHZ 

0.0096 0.0115 0.0115 0.0093 0.0116 

 

The model demonstrates reasonable accuracy in 
predicting RF energy across different frequency bands. The 
average NRMSE values range from 0.0074 to 0.0107, 
indicating satisfactory prediction performance. The 880- 
915 MHz band shows relatively accurate predictions with 
NRMSE values ranging from 0.0062 to 0.0083 and an 
average NRMSE of 0.0074. The 925-960 MHz band 
exhibits slightly higher NRMSE values of an average of 
0.0103. The 1710-1785 MHz, 1805-1880 MHz, 1920-1980 
MHz, and 2110-2170 MHz bands display similar patterns, 
with NRMSE values ranging from approximately 0.007 to 
0.012. The 880-915 MHz band recorded the highest average 
accuracy with 99.28% prediction accuracy. 

Fig. 5 (a-f) illustrates the six bands’ actual and predicted 
RF samples. For the 880-915 MHz band, the actual values 
range from 3.77E-07 to 3.82E-07 W, while the predicted 
values range from 3.76E-07 to 3.84E-07 W. The predicted 
values closely align with the actual values, indicating that 
the model performs well in accurately predicting RF energy 
in this band. The same pattern also continues for the other 
bands, with the predicted values consistently aligning with 
the actual values. This suggests the model performs well in 
predicting RF energy across different frequency bands. 

B. Performance Comparison with Single-band Prediction 

Table 2 compares the performance of multi-band 
prediction with single-band prediction in terms of NRMSE. 
In the multi-band prediction, the average NRMSE values 
range from 0.0074 to 0.0107, demonstrating relatively 
accurate predictions across the different frequency bands. 
On the other hand, in the single-band prediction, the 
NRMSE values range from 0.0062 to 0.0107.   

TABLE II.  PERFORMANCE COMPARISON BETWEEN MULTI-BAND 

AND SINGLE-BAND PREDICTION IN TERMS OF NRMSE USING THE LSTM 

MODEL. 

Frequency Bands NRMSE 

Multi-band 

Prediction 

Single-band 

Prediction 

880-915 MHz 0.0074 0.0079 

925-960 MHz 0.0103 0.0082 

1710-1785 MHZ 0.0101 0.0107 

1805-1880 MHZ 0.0102 0.0062 

1920-1980 MHZ 0.0106 0.0097 

2110-2170 MHZ 0.0107 0.0089 

 

Based on the provided results, the multi-band and 
single-band predictions have similar overall performance in 
terms of NRMSE. However, it is worth noting that the 
single-band prediction achieved slightly lower NRMSE 
values in some frequency bands than the multi-band 
prediction. This suggests that focusing on individual 
frequency bands can improve prediction accuracy for those 
bands. 

C. Performance Comparison with Previous Work 

In this section, we compare the performance of LSTM 
against models identified in previous studies for predicting 
RF signals. Researchers in [32] reported an accuracy of 
96.48% using LR, which was the highest and most stable 
among the four algorithms studied. In [30] an accuracy of 
85% was recorded using LR, which outperformed DT. The 
study in [31] reported an accuracy of 83% using SVM. The 
literature analysis indicates that LR has the highest accuracy 
in previous studies. Therefore, we compare the performance 
of LSTM against LR. Fig. 6 presents the actual and 
predicted values using both LSTM and LR. It was observed 
that LSTM recorded a 5.5% lower NRMSE than LR in 
single-band prediction.   

In multi-band prediction, Table 3 compares the NRMSE 
values between LSTM and LR models for predicting RF 
energy in different frequency bands. In all frequency bands, 
the LSTM model consistently achieves lower NRMSE 
values compared to the LR model. This suggests that the 
LSTM model outperforms LR in terms of prediction 
accuracy for RF energy in each band. 

TABLE III.  PERFORMANCE COMPARISON OF LSTM AND LR IN TERMS 

OF NRMSE 

Frequency Bands NRMSE 

LSTM LR 

880-915 MHz 0.0074 0.1453 

925-960 MHz 0.0103 0.1289 

1710-1785 MHZ 0.0101 0.0919 

1805-1880 MHZ 0.0102 0.1443 

1920-1980 MHZ 0.0106 0.1771 

2110-2170 MHZ 0.0107 0.1241 



 

Fig. 6. Actual and predicted RF energy values using LSTM and LR. 

V. CONCLUSION AND FUTURE WORK 

In this study, we have proposed a complete workflow for 
developing a multi-band prediction approach to predict the 
energy of RF signals in six different frequency bands using 
LSTM. RF energy signal is measured at different frequency 
bands using SDR. We predict the mean of the subsequent 
hour and a half to ensure that the harvesting circuit 
consumes less power by making fewer harvesting decisions. 
The results indicate the effectiveness of the proposed 
approach in capturing the variations in RF energy across 
different bands by achieving accuracies above 98% in all 
bands. The comparison between multi-band prediction and 
single-band prediction indicates similar overall 
performance in terms of NRMSE, with slight advantages in 
prediction accuracy for specific bands in single-band 

           
(a) (b) 

 

         
                                             (c)                                                                                                 (d) 

 

           
                                             (e)                                                                                                 (f)     

                       
Fig. 5. Actual and predicted values using LSTM in six bands. 

 



prediction. To the best of our knowledge, no deep neural 
network model currently exists that can precisely forecast 
RF energy in multi-band systems in the field of RF energy 
harvesting. Accurately predicting RF energy is essential for 
optimizing energy harvesting circuits and powering wireless 
and low-powered devices without relying on batteries. The 
future work of this research is exploring model compression 
techniques to optimize the computational complexity of the 
model. 
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